If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2+g-2=0
a = 1; b = 1; c = -2;
Δ = b2-4ac
Δ = 12-4·1·(-2)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3}{2*1}=\frac{-4}{2} =-2 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3}{2*1}=\frac{2}{2} =1 $
| 5(d+9)=75 | | 40=(3x-53)/10 | | 8z-22=393z+11)-z | | -1/3(x+)=19 | | 12x=-2x+56 | | 3x^2-91x+400=0 | | (2-w)(4w+5)=0 | | 5+x/3=2 | | 5(4+y)=-70 | | 4a-3(a-2)=2(3a-2 | | 7(a-5)+10=3(a+1) | | 92/p+7=18 | | 9x=14x-27 | | 90x-15=150x | | 1.75t^2+30t-100=0 | | 200=5*2^x | | 92p+ 7= 18 | | 2+(3g+2)=1/2(12g+8) | | 6x=58 | | -2.66n+0.26=-8.01 | | 3a+6a-9=30 | | 7x-2x-3=-32 | | (X+2)^2(x-3)(4-x)^2=0 | | 3x(x-2)+7=0 | | 23-(x+7)=6x-5 | | 6(6-3v)+10=-80 | | 3r+3.5=5r-2.5 | | Y-5=5/4x+35/4 | | 6z+5(6-z)=-(z-4) | | 10-5x=45x | | 5x+9=7×+21 | | -127=3-5(4m-2) |